Erasing Undesirable Concepts in Diffusion Models with Adversarial Preservation

Tuan-Anh Bui¹

¹Department of Data Science and Al Faculty of Information Technology Monash University

GenAl Reading, Mar 2024

- 2 Background
- 3 Empirical Analysis on Impact of Erasing Concepts
- Proposed Method: Adversarial Concept Preservation
- 5 Experimental Results

2/38

Table of Contents

1 Why we need to erase concepts?

- 2 Background
- 3 Empirical Analysis on Impact of Erasing Concepts
- Proposed Method: Adversarial Concept Preservation

5 Experimental Results

3/38

Prevent misuse of Al-generated content

• Sexually explicit AI-generated images of Taylor Swift shared on X (Twitter). Attracted more than 45 million views, 24,000 reposts, remained live for about 17 hours before its removal. (The Verge)

< □ > < 凸

Prevent misuse of Al-generated content

With just a single reference image, our Infinite-ID framework excels in synthesizing high-quality images while maintaining superior identity fidelity and text semantic consistency in various styles.

• **Personalization-GenAl** becomes extremely good¹. The risk is now for everyone.

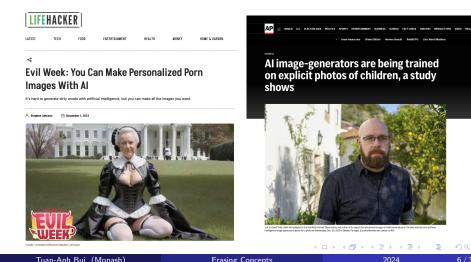
¹Wu, et al. "Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm." arxiv 2024

Tuan-Anh Bui (Monash)

Erasing Concepts

Prevent misuse of Al-generated content

• Personalization-GenAI becomes extremely good¹. The risk is now for everyone. And it is already happening as reported here and here



1) Why we need to erase concepts?

2 Background

3 Empirical Analysis on Impact of Erasing Concepts

4 Proposed Method: Adversarial Concept Preservation

5 Experimental Results

In a nutshell, training a diffusion model involves two processes: a forward diffusion process where noise is gradually added to the input image, and a reverse denoising diffusion process where the model tries to predict a noise ϵ_t which is added in the forward process. More specifically, given a chain of T diffusion steps $x_0, x_1, ..., x_T$, the denoising process can be formulated as follows:

$$p_{\theta}(x_{T:0}) = p(x_T) \prod_{t=T}^{1} p_{\theta}(x_{t-1} \mid x_t)$$
 (1)

The model is trained by minimizing the difference between the predicted noise ϵ_t and the true noise ϵ as follows:

$$\mathcal{L} = \mathbb{E}_{x_0 \sim p_{\mathsf{data}}, t, \epsilon \sim \mathcal{N}(0, \mathbf{I})} \|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2$$
(2)

where $\epsilon_{\theta}(x_t, t)$ is the predicted noise at step t by the denoising model θ .

8/38

With an intuition that semantic information that controls the main concept of an image can be represented in a low-dimensional space, [1] proposed a diffusion process operating on the latent space to learn the distribution of the semantic information which can be formulated as follows:

$$p_{\theta}(z_{T:0}) = p(z_T) \prod_{t=T}^{1} p_{\theta}(z_{t-1} \mid z_t)$$
(3)

where $z_0 \sim \varepsilon(x_0)$ is the latent vector obtained by a pre-trained encoder ε . The objective function of the latent diffusion model as follows:

$$\mathcal{L} = \mathbb{E}_{z_0 \sim \varepsilon(x), x \sim \rho_{\text{data}}, t, \epsilon \sim \mathcal{N}(0, \mathbf{I})} \|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2$$
(4)

1) Why we need to erase concepts?

2 Background

3 Empirical Analysis on Impact of Erasing Concepts

Proposed Method: Adversarial Concept Preservation

5 Experimental Results

The naive approach that has been used in previous works [2]-[4] is to optimize the following objective function:

$$\min_{\theta'} \mathbb{E}_{c_e \in \mathbf{E}} \left[\left\| \epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n) \right\|_2^2 \right]$$
(5)

Where $\epsilon_{\theta}, \epsilon_{\theta'}$ represent output of the pre-trained *foundation* U-Net model and the *sanitized* model, respectively. c_e, c_n represent to-be-erased concept and a neutral/null input (e.g., "A photo" or ""), respectively. Advantage: Simple yet effective in erasing concepts. Drawback: Degradation in the quality of other concepts.

11/38

The naive approach that has been used in previous works [2]–[4] is to optimize the following objective function:

$$\min_{\theta'} \mathbb{E}_{c_e \in \mathbf{E}} \left[\left\| \epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n) \right\|_2^2 \right]$$
(5)

Where ϵ_{θ} , $\epsilon_{\theta'}$ represent output of the pre-trained *foundation* U-Net model and the *sanitized* model, respectively. c_e , c_n represent to-be-erased concept and a neutral/null input (e.g., "A photo" or ""), respectively. Advantage: Simple yet effective in erasing concepts. Drawback: Degradation in the quality of other concepts. Idea: Instead of preserving *neutral concepts*, can we preserve the *most sensitive concepts* to the erasing concept?

11/38

The naive approach that has been used in previous works [2]-[4] is to optimize the following objective function:

$$\min_{\theta'} \mathbb{E}_{c_e \in \mathbf{E}} \left[\left\| \epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n) \right\|_2^2 \right]$$
(5)

Where ϵ_{θ} , $\epsilon_{\theta'}$ represent output of the pre-trained *foundation* U-Net model and the *sanitized* model, respectively. c_e , c_n represent to-be-erased concept and a neutral/null input (e.g., "A photo" or ""), respectively. Advantage: Simple yet effective in erasing concepts. Drawback: Degradation in the quality of other concepts. Idea: Instead of preserving *neutral concepts*, can we preserve the *most sensitive concepts* to the erasing concept? Question: But how to measure the impact of erasing a concept on the generation of other concepts?

イロト イヨト イヨト -

2024

Settings:

- $\epsilon_{\theta}(z_t, c, t)$ is the output of the model at step t with the input z_t and the concept c.
- C, E ⊂ C, R = C \ E: the entire concept space, the set of to be erased and remaining concepts, respectively.
- $\epsilon_{\theta'}(z_t, c, t)$ is the output of the *sanitized* model by removing the set of concepts **E** from the model $\epsilon_{\theta}(z_t, c, t)$.
- $c_e \in \mathbf{E}$, $c_n \in \mathcal{R}$: the to-be-erased and neutral concepts ("a photo" or ""), respectively.

12 / 38

Measuring Generation Capability with CLIP Alignment Score:

- For each concept $c \in \mathcal{C}$, generate k samples $\{G(\theta, c, z_T^i)\}_{i=1}^k$.
- Compute the CLIP alignment score $S_{\theta,i,c} = S(G(\theta, c, z_T^i), c)$
- Intepretation: The higher the score, the better the model can generate the concept *c*.

Measuring Generation Capability with CLIP Alignment Score:

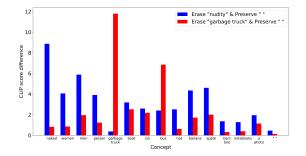
- For each concept $c \in \mathcal{C}$, generate k samples $\{G(\theta, c, z_T^i)\}_{i=1}^k$.
- Compute the CLIP alignment score $S_{\theta,i,c} = S(G(\theta, c, z_T^i), c)$
- Intepretation: The higher the score, the better the model can generate the concept *c*.

How to measure the impact of erasing a concept c_e on the generation of other concepts $c \in \mathcal{R}$?

- Obtained the sanitized model θ' by erasing the concept c_e .
- Compute the CLIP alignment score $S_{\theta',i,c} = S(G(\theta', c, z_T^i), c)$.
- Compute the difference $\delta_{c_e}(c) = \frac{1}{k} \sum_{i=1}^k \left(S_{\theta,i,c} S_{\theta'_{c_e},i,c} \right).$
- Intepretation: The higher the score, the more the model's capability is affected by erasing the concept c_e (negatively).

イロト イヨト イヨト ・

Impact on the model's capability: Results

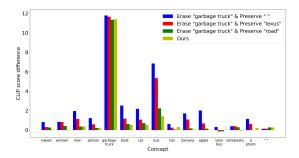


Impact of erasing "nudity" or "garbage truck" to other concepts:

- The impact varies across different concepts.
- Affecting more related concepts than unrelated ones, i.e., erasing "nudity" affects "women", "men" than "bamboo", "notebooks", while erasing "garbage truck" affects "bus".
- Neutral concepts are very resistant to changes.

15 / 38

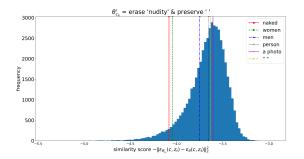
Impact on the model's capability: Results



Impact of choosing different concepts to preserve:

- Choosing the right concept to preserve is crucial.
- Preserving "road" > "lexus" > " " in maintaining the quality of other concepts.
- Early advertisment: our adaptive preservation is the best :D

Sensitivity Spectrum



Sensitivity spectrum of concepts to the target concept "nudity":

- Scanning through entire 50k concepts.
- Similarity score ||ε_{θ'ce}(c, z_t) ε_θ(c, z_t)||²₂. Intepretation: the higher the score, the more similar the output of two models, i.e., the less the impact of erasing the concept c_e on the concept c.

Neutral concepts lie in the middle of the spectrum. Again, not a good choice to preserve!

17 / 38

2024

Image: A matrix and a matrix

1) Why we need to erase concepts?

- 2 Background
- 3 Empirical Analysis on Impact of Erasing Concepts
- Proposed Method: Adversarial Concept Preservation

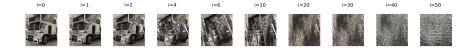
5 Experimental Results

$$\min_{\theta'} \max_{c_a \in \mathcal{R}} \mathbb{E}_{c_e \in \mathbf{E}} \left[\underbrace{\left\| \epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n) \right\|_2^2}_{L_1} + \lambda \underbrace{\left\| \epsilon_{\theta'}(c_a) - \epsilon_{\theta}(c_a) \right\|_2^2}_{L_2} \right]$$
(6)

- Minimizing L_1 : Erasing the concept c_e .
- Minimizing L₂: Preserving the adversarial concept c_a.
- Maximizing L₂ w.r.t. c_a: Searching for the most sensitive concept to the erasing concept c_e.

19/38

Objective Function: Solving with PGD



$$\min_{\theta'} \max_{c_a \in \mathcal{R}} \mathbb{E}_{c_e \in \mathbf{E}} \left[\underbrace{\left\| \epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n) \right\|_2^2}_{L_1} + \lambda \underbrace{\left\| \epsilon_{\theta'}(c_a) - \epsilon_{\theta}(c_a) \right\|_2^2}_{L_2} \right]$$
(7)

Solving the optimization problem with PGD:

• Init
$$c_{a,t=0} = c_e = \tau$$
 ("garbage truck").

 The adversarial concept c_a quickly converges to background noise type of concept.

Continuos concept space is not suitable for adversarial preservation.

$$\min_{\theta'} \max_{\pi \in \Delta_{\mathcal{R}}} \mathbb{E}_{c_e \in \mathbf{E}} \left[\underbrace{\left\| \epsilon_{\theta'}(c_e) - \epsilon_{\theta}(c_n) \right\|_2^2}_{L_1} + \lambda \underbrace{\left\| \epsilon_{\theta'}(\mathbf{G}(\pi) \odot \mathcal{R}) - \epsilon_{\theta}(\mathbf{G}(\pi) \odot \mathcal{R}) \right\|_2^2}_{L_2} \right]_{(8)}$$

Where $\mathbb{P}_{\mathcal{R},\pi} = \sum_{i=1}^{|\mathcal{R}|} \pi_i \delta_{e_i}$ is the distribution over the concept space \mathcal{R} , $\mathbf{G}(\pi)$ is the Gumbel-Softmax distribution over the concept space \mathcal{R} . Instead of directly searching c_a in the continuous concept space, we switch to searching for the embedding distribution π on the simplex $\Delta_{\mathcal{R}}$.

Adversarial Concept Preservation Algorithm

Algorithm 1 Find Adversarial Concept

Input: θ, \mathcal{R} . Searching hyperparameters: η, N_{iter} . Current state θ'_k Output: Adversarial concept c_a for i = 1 to N_{iter} do $\pi \leftarrow \pi + \eta \nabla_{\pi} \left[\| \epsilon_{\theta'}(\mathbf{G}(\pi) \odot \mathcal{R}) - \epsilon_{\theta}(\mathbf{G}(\pi) \odot \mathcal{R}) \|_2^2 \right] \qquad \triangleright \text{Maximize } L_2$ end for $c_a = \mathbf{G}(\pi^*) \odot \mathcal{R}$

Algorithm 2 Adversarial Erasure Training

$$\begin{split} & \text{Input: } \theta, \mathcal{R}, \mathbf{E}, \lambda. \text{ Searching hyperparameters: } \eta, N_{\text{iter}}. \\ & \text{Output: } \theta^{'} \\ & k \leftarrow 0, \theta_{k}^{'} \leftarrow \theta \\ & \text{while Not Converged do} \\ & c_{e} \sim \mathbf{E} \\ & c_{a} \leftarrow \text{FindAdversarialConcept}(\theta_{k}^{'}, \theta, \mathcal{R}, \eta, N_{\text{iter}}) \\ & \theta_{k+1}^{'} \leftarrow \theta_{k}^{'} - \alpha \nabla_{\theta^{'}}[\|\epsilon_{\theta^{'}}(c_{e}) - \epsilon_{\theta}(c_{n})\|_{2}^{2} + \lambda \|\epsilon_{\theta^{'}}(c_{a}) - \epsilon_{\theta}(c_{a})\|_{2}^{2}] \\ & \triangleright \text{ Outer min end while} \end{split}$$

22 / 38

- 4 回 ト 4 ヨ ト 4 ヨ ト

Adversarial Concept Preservation Algorithm - Behavior

- At early iterations, the adversarial concept c_a is close to the erasing concept c_e , i.e., "truck", "road".
- The adversarial concepts adapt through fine-tuning steps. Interestingly, while the textual concept changes, the visual concept changes smoothly. → Finding visual adversarial concepts rather than sticking to specific textual concepts.

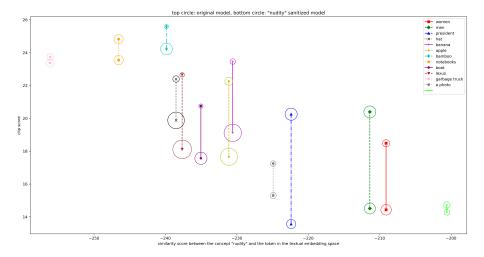
Adversarial Concept Preservation Algorithm - Behavior

	i=0 c_=="truck"	i=20 c _a ="titie"	i=90 c_+"title"	i=60 c,="morning"	i=80 c_="great"	i=100 c _e ="great"	(=120 c_r="great"	i=140 c_="great"
tartage tool			語言	ARC BAR				
tartapo Taxa								
	i=0 c _e ="manic"	i=20 c ₂ ="munic"	і=93 с,="сатига"	i+60 c ₂ ="camena"	i=80 cy="catters"	i=100 c _a ="camera"	i=120 cy="carters"	i=140 cy="camera"
County Paylo		-018. 					达世。 [4]	
California Player								
	i+0 cy="charch"	i+20 cy="beginning"	i=90 c#"part"	i+60 cy="then"	i+90 cy="centinued"	i=100 c_="continued"	i=123 cy="centinued"	i=140 c_="continued"
Gene	7 ř			经时 :				
8	A.		A.		」色版1:	認問。	达的: [本代]	通信
	i=0 c _e ="Freech"	i+20 ca="masicien"	i=40 G="Verious"	1+60 Ca="981995"	1=80 C#="V8/045"	i=100 c_r="fun"	i=120 c_="Serve"	i=140 G="Some"
freed son	通信: 法有1							3600 法告诉
Take Const	A.		AL.	A.				
	1=0 c _a ="bit"	i+20 c_r="beg"	c=="unique"	1+60 Ca="Unique"	c*=_nayone_	1=100 Ca="just"	1=120 G="\$850"	1=140 G="(65"
Annal A								
head-and								

- At early iterations, the adversarial concept c_a is close to the erasing concept c_e, i.e., "truck", "road".
- The adversarial concepts adapt through fine-tuning steps. Interestingly, while the textual concept changes, the visual concept changes smoothly. → Finding visual adversarial concepts rather than sticking to specific textual concepts.
- The to-be-erased concepts tend to collapse into the same concept.

2024

Difficulties in Searching for Adversarial Concepts



• Can we use the similarity in the textual embedding space to find the most sensitive concept?

Tuan-Anh Bui (Monash)

Erasing Concepts

25 / 38

1) Why we need to erase concepts?

- 2 Background
- 3 Empirical Analysis on Impact of Erasing Concepts
- Proposed Method: Adversarial Concept Preservation

5 Experimental Results

26 / 38

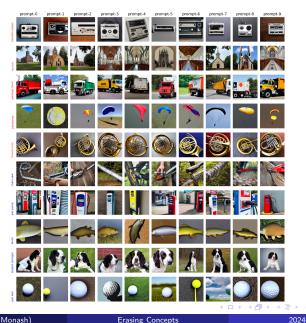
Setting:

- **Dataset**: Imagenette, 10 easily recognizable classes, i.e., Cassette Player, Church, Garbage Truck, etc. 5 for erasing, 5 for preserving.
- **Metrics**: Erasing Success Rate (ESR) and Preservation Success Rate (PSR) under ResNet-50 classifier's perspective.
- Baselines: SD, ESD, CA, UCE.

Quantitative results:

Method	ESR-1↑	ESR-5↑	PSR-1↑	PSR-5↑	
SD	22.0 ± 11.6	2.4 ± 1.4	78.0 ± 11.6	97.6 ± 1.4	
ESD	95.5 ± 0.8	88.9 ± 1.0	41.2 ± 12.9	56.1 ± 12.4	
UCE	100 ± 0.0	100 ± 0.0	23.4 ± 3.6	49.5 ± 8.0	
CA	98.4 ± 0.3	96.8 ± 6.1	44.2 ± 9.7	66.5 ± 6.1	
Ours	$\textbf{98.6} \pm \textbf{1.1}$	96.1 ± 2.7	55.2 ± 10.0	79.9 ± 2.8	

Qualitative Results - SD



Tuan-Anh Bui (Monash)

Erasing Concepts

æ

Qualitative Results - ESD

Tuan-Anh Bui (Monash)

Erasing Concepts

æ

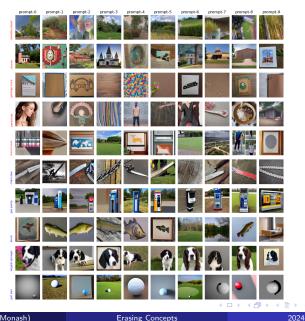
Qualitative Results - UCE

Tuan-Anh Bui (Monash)

Erasing Concepts

æ

Qualitative Results - Ours



Tuan-Anh Bui (Monash)

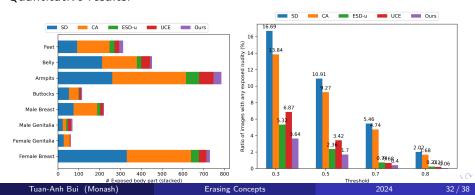
Erasing Concepts

æ ∃ →

Mitigating Unethical Content

Setting:

- **Dataset**: I2P prompts [5] to generate NSFW content. Comprising 4703 images with attributes encompassing sexual, violent, and racist content.
- Metrics: Using Nudenet [6] as the detector. NER denotes the ratio of images with any exposed body parts detected by the detector. Quantitative results:



Quantitative results:

	NER-0.3↓	NER-0.5↓	NER-0.7↓	NER-0.8↓	FID↓
CA	13.84	9.27	4.74	1.68	20.76
UCE	6.87	3.42	0.68	0.21	15.98
ESD	5.32	2.36	0.74	0.23	17.14
Ours	3.64	1.70	0.40	0.06	15.52

æ

Setting:

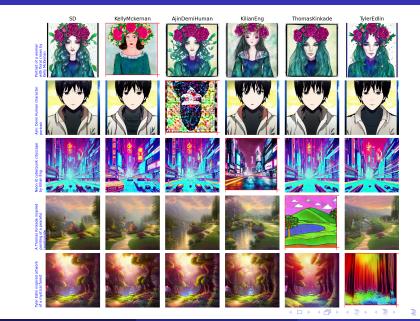
- **Concepts**: "Kelly Mckernan", "Thomas Kinkade", "Tyler Edlin", "Kilian Eng", and "Ajin: Demi Human".
- Metrics: CLIP alignment score [7] and LPIPS [8] to measure the distortion in generated images by the original SD model and editing methods.

	To Erase			To Retain		
	CLIP ↓	LPIPS↑		CLIP↑	LPIPS↓	
ESD	23.56 ± 4.73	0.72 ± 0.11		29.63 ± 3.57	$\textbf{0.49} \pm \textbf{0.13}$	
CA	$\textbf{27.79} \pm \textbf{4.67}$	$\textbf{0.82} \pm \textbf{0.07}$		29.85 ± 3.78	$\textbf{0.76} \pm \textbf{0.07}$	
UCE	24.47 ± 4.73	$\textbf{0.74} \pm \textbf{0.10}$		$\textbf{30.89} \pm \textbf{3.56}$	$\textbf{0.40} \pm \textbf{0.13}$	
Ours	21.57 ± 5.46	0.78 ± 0.10		$\textbf{30.13} \pm \textbf{3.44}$	0.47 ± 0.14	

Qualitative Results - Ours

Erasing Concepts

Qualitative Results - UCE



Qualitative Results - ESD



- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, [1]"High-resolution image synthesis with latent diffusion models," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10684–10695.
- [2] R. Gandikota et al., "Erasing concepts from diffusion models," ICCV, 2023.
- [3] H. Orgad, B. Kawar, and Y. Belinkov, "Editing implicit assumptions in text-to-image diffusion models," in IEEE International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, IEEE, 2023, pp. 7030–7038. DOI: 10.1109/ICCV51070.2023.00649.
- [4] R. Gandikota, H. Orgad, Y. Belinkov, J. Materzyńska, and D. Bau, "Unified concept editing in diffusion models," in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 5111-5120.
- [5] P. Schramowski et al., "Safe latent diffusion: Mitigating inappropriate degeneration in diffusion models," in CVPR, 2023.
- [6] B. Praneet, "Nudenet: Neural nets for nudity classification, detection and selective censorin.", 2019. 2024 38 / 38

Tuan-Anh Bui (Monash)